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I. INTRODUCTION

It is often useful to describe weak sound waves by the theory of
geometrical acoustics. By this means, surfaces of constant phase in an
oscillatory disturbance may be traced forward in time, and amplitudes of
the disturbance, associated with those surfaces, may be calculated. The
heart of the method lies in the construction of a system of rays along
which points of an initial surface are mapped parametrically by later times
onto the successive members of a family of surfaces. Once the rays have
been constructed, amplitudes are found from a transport equation, which
is an ordinary differential equation that determines the variation along a
ray. The method as described above provides an asymptotic solution in
linear acoustics for high frequencies. By various modifications and
extensions the basic ideas may be applied to pulses, progressing waves,
and wave front expansions. All of this has been conveniently summarized by
Friedlander!, who also gives several detailed examples. In nonlinear
acoustics acceleration waves or weaker discontinuities may also be treated
geometrically?, but here the results are exact. In every case mentioned,
the ray equations and the transport equations are only weakly coupled in
that amplitude transport depends on the rays, but the rays are independent
of amplitude.

In this paper the intent is to obtain, insofar as possible, an intrin-
sic description of shock propagation, that is to say, a description such
that the motion and the evolution of the amplitude of the shock are deter-
mined by quantities known on the shock itself. Such a description would
parallel the results of geometrical acoustics, but with significant differ- 1
ences. To begin with, a shock wave does not generally lie on a character-
istic surface of the governing equations, and so it is not possible to
define a ray as a trajectory derived from the characteristic equation. 1
Neither is it possible to find first the motion and then the amplitude of
the shock since the two are strongly coupled. Finally, since acoustic
disturbances may overtake and modify the shock, a completely intrinsic
description seems to be impossible. Nevertheless, it turns out that a con-
venient choice of ray arises in a natural way from the analysis, and that
an equation for the variation of amplitude along a ray can be derived.
Furthermore, the coupling to the flow behind the shock occurs only through
a single scalar term, even for the fully three-dimensional case, and the
amplitude equation may be cast into a form such that the coupling is
relatively weak.

In a previous paper3 a growth equation for the shock amplitude in an
inviscid simple elastic fluid was derived. In that paper only mechanical

1F. G. Friedlander, Sound Pulses, Cambridge University Press, Cambridge,
19568.

2E. Varley and E. Cumberbatch, J. Inst. Maths. Applice. 1, (1965) 101.

3p. J. Chen and T. W. Wright, Meccanica (to appear).

~
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effects were considered since pressure was assumed to be a function of
specific volume alone. In addition, the fluid ahead of the shock was
assumed to be uniform and at rest. Finally, the analysis was based on a
fixed reference configuration, which is somewhat unnatural for problems in
fluids, although the results are perfectly correct. This paper is an out-
growth of reference (3) and contains the results of reference (3) as a
special case with some minor differences of notation, but there are signif-
icant differences in approach. The fluid is still assumed to be inviscid,
but now the pressure is taken to depend on specific entropy as well as
specific volume although heat conduction is ignored. Thus, the only dis-
sipation effect originates in the shock wave itself. The fluid ahead of
the shock may be in an arbitrary state with arbitrary smooth motion.
Finally, the analysis here does not rely on a fixed reference configura-
tion, but rather makes use only of the present spatial configuration at
the shock.

In the next two sections the necessary preliminaries are given. In
Section II, appropriate kinematics to describe the motion of a shock wave
and the evolution of shock amplitude are outlined. The approach taken is
that of the theory of singular surfaces“ but the idea of the displacement
derivative is not used. Rather, variations are sought along a convenient
ray direction, chosen so as to simplify the results. 1In Section III the
constitutive relation, the equations of motion, and the jump conditions
are reviewed.

In Section IV the main results are given. With the derivatives of
amplitude and entropy eliminated in favor of the derivative of shock speed,
three forms of the transport equation for the variation of shock speed
along a ray are found. Each of these forms exhibits a different coupling
term with the flow behind the shock. In each case the exact value of the
coupling term depends on the past history of the shock trajectory. Thus
the equations are really functional-differential equations in disguise,
but the explicit nature of the functionals is not given. If it is then
assumed that the values of one coupling term are known exactly, then it is
found that the transport equation and a kinematical relation between shock
speed and shock normal form a hyperbolic system of equations. This implies
that disturbances to the shock surface will propagate laterally within the
shock surface itself. Finally, these results are compared with Whitham's
theory of shock dynamics, which was derived for polytropic gases by approx-
imate means5,6,7,8, One form of the equations given here, considered as a

4C. A. Truesdell and R. A. Toupin, "The Classical Field Theories," Flugge's
Handbuch der Physik, III/1, Springer, Berlin-Gottingen-Heidelberg, 1960.

5G. B. Whitham, J. Fluid Mech. 2, (1957), 145.

6G. B. Whitham, J. Fluid Mech. 5, (1959), 364.

’G. B. Whitham, J. Fluid Mech. 3L, (1968}, 449.

8G. B. Whitham, "Linear and Nonlinear Waves," John Wiley and Sons (Wiley-
Interscience), New York - London - Sydney ~ Toronto, 1974.
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hyperbolic system and specialized to polytropic gases, gives the same

-— -——speed-of propagation—withinthe—surface-as Whitham'stheory -for all Mach-
numbers.

II. KINEMATICS

A shock wave may be described as a propagating singular surface across
which the pressure, density, entropy, and particle velocity are all dis-
continuous. There are several convenient mathematical representations of
the surface. For example,

I(x, t) = o
t - 1(x) =0 (2.1)
I TURRETLS)

In these equations x is the ordinary Euclidean position vector in a fixed

Cartesian coordinate system, t is time and ul, u2 are Gaussian surface
coordinates. The normal in the direction of propagation, n, and the
normal velocity, v, may be computed from any of the three representations.
The first two give

Lt 2 =1 _: -1=mn: -v (2.2)

where the comma denotes partial differentiation. With the surface coordi-
nates orientated correctly for sign, the third representation gives

LR SR RYAL R ¥

X

(2.3)

v

fi=}

st °
Equation (2.3)2 may be derived by inserting (2.1)3 into (2.1)2, differ-
entiating with respect to t holding ul, u2 fixed, and applying (2.2).

The function § may be regarded as a coordinate transformation from
1 2 1 2 3

u,u, ttox, x, x. Its partial derivatives have special significance.

Basis vectors on the surface are given by

=1y 2 (2.4)

W

A = -

T F 4
Greek capital letters will always be used for components of surface vectors
and tensors, and therefore will always have the range 1, 2 unless it is

stated otherwise. The derivative with respect to time will be called the
propagation vector.

b= 3 (2.5)




~-— tions of the form (2:1) could be made:  In fact, ome of the principal tasks —

Clearly, b need not be normal to 51 and 52 since infinitely many representa-

of this paper is to choose b in a convenient and simplifying manner.

The surface metric tensor and reciprocal basis follow in the usual
way from (2.4)

Koy = By - By

A = det(Ar,) (2.6)
ra _ i

A . (AI‘A)

r_.ra

AT =AMy

The coordinate transformation will be invertible if its Jacobian determi-
nant, J, does not vanish.

J

1
- ,i .
(8, x8,) - b= {der adin b
1 2.7)
Av o

It is now easily checked that the inverse of the Jacobian matrix is the
following

Q

c
n

¥ A\
1

<| -
=]
e
o

N—"
2>

—

(2.8)

Ju
ex

In (2.8)2 the substitution u3 = t has been made to indicate that time is

2
v

to be paired with the surface variables ul, u2 and not with the spatial
1 2 3

variables x ', x°, x*. For clarity this practice will be followed in the
sequel, and the .symbol t will only stand for time in conjunction with

1 2 .5
X 5. X ¢ N

If a function is defined only on the shock surface, it is most natur-

ally regarded as a function of ul, u2, u3. Yet with the aid of (2.8) it

still makes sense to compute the spatial gradient of such a function.
Thus, if the amplitude of the shock wave is a = a(ul, uz, us), its gradient
is given by

da _ i ) I
x - 2r (1 VD“‘B)A te

<p3

2.9)

10




and the directional derivative along b is given by

da _ 4 i
b . 3—2_(-— 3’3 (210)

The notation alr indicates covarient surface differentiation. Other

functions, such as the pressure, are defined for all x, t, but the limit-
ing values on the shock surface are of particular interest. For such a
function, f(x, t), let f and f indicate the limits taken from the region
ahead of or behind the shock respectively. Thus, we have

£ < lim f(x, T(x) F€) (2.11)
€0

The difference or jump between the two sides is indicated as follows.

(£] = £ -£ (2.12)

In taking the gradient of such a function; one must be clear as to the
order of the differentiation and the limit on the surface. From (2.11)
and (2.2), it follows that

n.
5 - | +
= ()« = (F o)

n, (2.13)

[f],l = [f,l] * 'V_' [f,t]

£
(f) u

Formulas (2.9) and (2.10) apply to the functions £* and £ as well.

III. DYNAMICS

[n this section one version of the standard equations of inviscid
fluid mechanics is reviewed. Let e, the specific internal energy of the
fluid, be regarded as a function of specific volume, v, and specific
entropy, n. We have

e=¢eW, n) (3.1)

In terms of this thermodynamic potential the pressure, p, and temperature,
8, are given as follows.

p
2 (3.2)

0 = ¢
n

The subscripts denote partial differentiation.

In regions adjacent to a shock wave, the conservation laws for mass,
linear momentum, and energy may be expressed by partial differential
equations,

11




o1 i il (3.3)

The third equation is a reduced form for the conservation of energy in

the absence of heat conduction and supply and makes unnecessary a separate
inequality for entropy. The particle velocity is uy, the density is p, and
the body force is f. Latin indices are associated with Cartesian vectors
and tensors. The dot denotes the material time derivative, e.g.

w = U,t + U,i ui.

Across a shock wave, the conservation }aws must be expressed by jump
conditions. It is useful first to define U™, the normal shock speed
relative to the fluid on either side of the shock.

a &
U = v - u. n. (3.4)
il =l
The conservation laws for mass, linear momentum, energy in a reduced form
and entropy may now be stated as follows.

[pU] = o

[pln, = p" U [u;]
- +1 ) (3.5)
pp U [e]l =% + p) [u;] ny

[n]1 2o

It is assumed that Dy is always negative, but A need not be positive for

the development of the theory. It is assumed that all shock waves to be
examined not only obey equations (3.5), but are stable as well. The
questions of necessary or sufficient conditions for stability will not be
considered.

In a shock wave U’ # o. Thus equation (3.5) shows that the jump in
particle velocity must be normal to the wave, and therefore, it may be
expressed as follows.

[ui] =au’ ny
i 5 . (3.6)
oru., =u, +alU n,

i b 3

U" has been introduced as a convenient normalizing factor, and a is called
the amplitude of the wave. It now follows directly from (3.4), (3.5),, and

1
(3.6) that

-_ + .
9 = u+ (1-a) (3.7)
Ut = U" (l-a)
12
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and from (3.5)2 and (3.6) that
ot = JEL (3.8)

From (3.7)1 it is clear that the amplitude, a, is a measure of the

compression (or dilation) produced by the shock.

The entropy behind the shock can be written in terms of b, defined as
follows

n” = nt(1+b) (3.9)

Of course it is required that b > o. Since e and p were originally taken
to be functions of v and n, it is clear that immediately behind the shock
they may now be regarded as function of a and b with v* and n* as (known)
parametric functions. Equation (3.8) is one relation among the variables
(a, b, U*) and (3.5), with (3.6) provides another.

0" [e] = 4(p' +p)a (3.10)

In some cases it may be convenient to use (3.8) and (3.10) so as to elimi-
nate two of the variables (a, b, U+) in terms of the third. For example,

a {apn' 20" en— Bk
da = - U du
= + - +  +. 2
& {UPUHJ(U)
(3.11)
_a U* +
db = o e dU
e
n

The solution to these differential equations will depend parametrically on
o, n+, and leads to the well known results that for small amplitudes

b = 0(ad).

IV. TRANSPORT EQUATIONS

If equations (3.8) and (3.10) could be supplemented by a third
independent relation among the three variables a, b, U* with time as a
parameter, then the evolution of these quantities during shock propagation
could be completely determined, at least in principle. If such a relation
is available, it must exhibit dynamical coupling with the flow behind the
shock since none exists in either (3.8) or (3.10), and yet such coupling
must be present.

A shock wave connects two adjacent regions of smooth flow where
equations (3.3) hold. An attempt to obtain the desired third relation can
be made by manipulating the jump in (3.3)2




B, ) - (7 0D e

(4.1)

- + . = + .
*o - ) £y =0 u -0 U

The procedure now followed is to express as many quantities in (4.1) in
terms of a, b, U' and v*, n*, ui+ as possible. The terms p;, p; and p;,
p; already have the required dependence through (3.7)1 and (3.9). The
process of converting (U,i) and (n,i) into the required form is lengthy

but straightforward, and requires little more than repeated application
of (2.13), (3.3)1, and (3.3)3 to (3.7) and (3.9). Begin with (2.13)

applied to specific volume.
n.

v )* (u) s

x
ol t)

(4.2)

Either the top sign or the bottom sign is to be chosen consistently. From
the definition of material derivative we also have ;

S - . 4.3
(U,t) = o - (U,i) uy (4.3)

Equations (4.2) and (4.3) combine to give
? 1 + IR B3 g Sk
T R S S O IR ) (4.4)

The matrix on the left hand side is easily inverted.

. N

(00 = o + ui 2 ;(u),1 e R SR
For the minus signs in (4.5) and with the use of (3. 3) (3.6) (3.7)1
and (3. 7)2 this becomes -

nk + +
(U,k) = {6ki + —;f——————(ui +al ni)}
U (1-a) . (4.6)
3(\)+),- (1-a)-y'a | - 5 o' (-a) (v )

The last term in (4.6) may be expanded with the aid of (2. 13) and (3.6),
to give (4.7) <

n.

- + -

” A <
(uj,j) = (uj +al nj),j = (uj,t) ; (4.7)

and the last term in (4.7) may be expanded to give (4.8).

(u. )' y_ll_jﬂl

+ +
j,t - = (ﬁ 6 ~(u1 +al nl)-

.{(uj+),l +@u’ nj)’l}

14 j

(4.8)




To arrive at (4.8), the definition of material time derivative as well as
(2.13)1, (3.4), and (3.6)2 have been used. Inspection of (4.6) - (4.8)

shows that spatial derivatives must be taken on two types of quantities:
those defined only on the surface, and those defined in the region ahead
of the shock but restricted to the shock as in (2.11). Accordingly, the
derivatives must be interpreted by (2.9) or (2.13).

The term (v') ; may be found from (4.4) with (3.3) substituted.

n. u, n.
* ) JSE * T +
(U )’1 === (GIJ v ) (U,j) * v v (uJ,J) (4'9)
Similarly, for (ui+) ; we have
e S e (4.10)
37T P TS Yk T :
Finally, with (4.7) - (4.10) equation (4.6) reduce§ to the following
f L Voo "
v ) = Nl-als,. *an. 0 (u .) *c—mde [u.
© ;)7 = j(1-a),, 5 J}( 5 o [u;]
+ l+a ns U
-u gdi. + n, n, + 2 —:——l~—— a .
L vt (-a) ) )

av n. 7 Sy i
i k k + +
- = o ) kY V' a nj j
0] U (1-a) 2 2
= +
- n.n.n (uj,k)

ut(1-a)

. . i . ;
The term -nj 3 in (4.11) is equal to B, which is twice the mean surface

curvature. That this is true may be seen from (2.9) applied to n and the

r ¥ .
formulas n r A = -Br and n * D FERE 3= o. The fact that n = o
simplifies the reduction of (n i)-’ but the process is exactly the same.
The result is o

+

o =t
(h )7 = (+b) {5ij 2 ninj} (n ;)
n. u. (4.12)
+1 i §.. + = n.n, + bb

ij " 1-a T T g gy 3

The body force and acceleration terms may be rewritten as

+ +
Y & e =Ea Ty N 5. =
4 i (4.13)
= L- - & a + * +
1 ) - 1 {R, y) * P, (ny) }

15
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Equations (4.11) - (4.13) should be inserted in (4.1) to complete the
desired reduction.

Rather than writing out the whole equation, it is more convenient to
examine the normal and surface components separately. But even before
doing that, note that a certain combination of derivatives of the amplitude
arises when taking the normal component of (4.11). That is

+ +
R F .
Q) n, uy ) a’1

z . + .
The same combination occurs for U and b. No choice has yet been made for
the propagation vector in (2.5), so we now set

b=x_,=U n+u =U n+u (4.14)

where the last equality follows from (3.6)2 and (3.7)2. From (3.4) it is
clear that this choice satisfies (2.3)2. In effect, this one feature of the
surface parametrization (2.1)3 has been chosen strictly for convenience.

Any other choice that satisfies (2.3)2 could also be made to serve. Equa-

tion (4.14) defines a family of rays along which the surface may be thought
to propagate. Now with the aid of (2.1C) and (4.14), the normal component
of (4.1) may be set down. The plus sign is always understood to apply to
all terms unless the minus sign is explicitly indicated. This convention
will be adopted in the sequel.

= - v
2upU a’3 - npn b,s + U U’3
) P, ) :
= -a(l-a)upU Un1 i 5 + n. [u.]
(4.15)
+U {pU (1-a) -pu} (U,n) + U {pn (1+b)-pn}(n’n)
-avp (njuj,n)
The subscript n denotes the normal derivative, e.g., (v n) = ni(u i).

Two other equations for the 3-derivatives of a, b, U may be found by
differentiating (3.8) and (3.10) and applying the following two simple
identities.

(v) = U ) +v (u, .)
’3 ’n J’J (4.16)

(”),3 U(n’n)

The first of these is derived from (2.10), (4.14) and (4.9), and the second
is derived similarly. The two new equations may now be written down.

16




= 2 =
-(upU + oU )a’3 + npn b,3 - 2apUU,3

= - 2
= - {(l-a)pu -p, * a(pl) } {Uu,n + "uj,j}
= S |
{(l*flo)pn 1;>,]}Un,n |
= 2 - <
- %- {upu + poU } a’s + {%—anpn - pnen } b,3 (4.17)

a

= -{j [PU + pU_ (l-a)] + a(l-%) (DU)Z}{Uu,n +qu’j}
-45 [Pa * o )] + ofeq - e Gwedy un

Rather than solving directly for a 3 b 3 and U 3 from (4.15) and

(4.17), it is convenient to regard a and b as functions of U, as in (3.11).,
Then (4.17) may be solved for a 3 and b 3 in terms of U .

3
2 ap -
- au o -1
a,3 = ¥ > gz bt } U U,S
u p n
pn- a P 1
ey > (711‘12)'-(1_2) :
Py ¥ p, U-u (4.18)
2
_au v a
b g sl g8 -{211'12}
nen ne

In (4.18), I1 and 12

respectively. Since I1 and I

are the right hand sides of (4.17)l and (4.17)2

2 vanish for homogeneous conditions ahead of 3
the shock, they will be called the inhomogeneous terms. In addition, yu, .

the Mach number behind the shock, has been introduced. We have

2. (.[)2 . ew?
c P,
and (4.19)
ooy -
c p

for the Mach number ahead of the shock. Here c* and ¢ are the acoustic

speeds relative to the flow ahead of and behind the shock, respectively.
+

e Lo
We have (p ¢ )" = w AL

17
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With the aid of (4.18), (4.15) becomes

1+3u2 1+u2 pn 2
a - a U
2 2 2 - , 3
w (l-p)  E30 pe,
2 2 (4.20)
§] 1- .
= -a(l-a) —7-ni,i + ; p - [u] +1
H H

I is the net inhomogeneous term from (4.15) and (4.18) and is given in
full in the Appendix. Equation (4.20) together with (4.14), repeated here,

X,.,=Un+u (4.14)

describe the instantaneous motion of the surface. At a given instant of
time, if the location of the surface is known, then the normal n and mean

curvature B; are known. Furthermore, if the distribution of U over the

surface is known, then the distributions of a and b are known. Finally,
since v, n, and u are known ahead of the shock, the only remaining term in
(4.14) and (4.20) that is not known is the single scalar quantity n - [u].
This final quantity provides the only coupling of the shock with the flow
behind the shock in spite of the fully three-dimensional nature of that flow.

Equation (4.20) shows that, aside from inhomogeneities, it is the
competition between the mean curvature and the coupling to the rearward flow
that determines whether U is increasing or decreasing with time, and hence,
through (4.18) whether the amplitude is increasing or decreasing.

In a similar way, with (4.11) - (4.13) inserted in (4.1), equations
connecting the transverse derivatives of a, b, and U may be found by
resolving (4.1) along the base vectors in the shock surface.

- - " p .
vp, a]r - P, bsr s Ar « Tl

s {(l—a) - 1 pu} ) (4.21)

- 1
+ {(1+b)pn = pn} (n‘r)

With a and b determined over the whole surface from the solution of (4.14)

and (4.20), this equation determines the transverse components of acceler-

ation behind the shock. It may be thought of as a compatibility condition

for it indicates that acceleration may not be arbitrarily prescribed behind
a shock wave.
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Other Forms of the Transport Equation

Although (4.20) is exact as it stands, it may be cast into other forms
by choosing other terms to provide coupllng with the rearward flow. A
discussion of the growth and decay of plane shocks in an elastic solid?
used the strain gradient as the coupling parameter; and a similar discussion
concerning curved shocks in an elastic fluid (see reference 3) used the
totally normal component of the second gradient of deformation, i.e., the
term cn = 1 aNB(xl,aB) where the deformatlon is given as a function of

material coordinates and time, x1 =X (X ,t), and the spatial and material
normals are n and N respectively. In the present context, the quantity
most closely related to these two is the normal density gradient behind
the shock or alternatively the normal derivative of specific volume behind
the shock. The following derivation uses only kinematic identities and
jump conditions to show the relationship between the normal component of
acceleration and the normal derivative of specific volume behind the shock.

Begin with the following identity, which uses (3.6)2 and (4.14).

n. (U n,_ +u, ) (u.)

+ + + +
= nj (U no+oug ] (uj +al nj),k

With the aid of (2. 13)1 and (2.10), the terms of (4.22) may be expanded and
regrouped.

n. [u ] + n n U [u ]
g . (4.23)
=au’ njnk(uj,k) + (a U ),3

Next, note that

ninj(ui,j) T (ui,i) ks (61_] = ninj) (ui,j)- (4.24)

The last term in (4.24) involves only surfacé derivatives. Since the
transverse component of velocity is continuous across a shock, we have

r g ¥
[&i ui] g Ai,r [ui] * A Ajr [ui,j]

which may be rewritten as

+
-a U "i,i & (dij - ninj) [ui,j] =0 (4.25)

From conservation of mass (3.3)1 and a rearrangement of terms we have

(u, ) =p" (W) =p {(u)—’3 = U ni(u i)‘}

i,i

9p, J. Chen and M. E. Gurtin, Int. J. Solids Strue. 7, (1971), 5.
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which may be rewritten as

i CHO R 1 DR R (4.26)

where (3.3)1, (3.7)1 and (4.16)1 have been used. Equations (4.23) - (4.206)
may be combined to give

nj[ﬁ.] = (l-a)pU2 [U,n] + 2 U a

J 3

+ a(l-a) UZ n, o

i (4.27)

+ a U,3

+ a njnk U uj,k

where all terms on the right hand side carry the plus sign. With the
substitution of (4.27) and use of (4.18)1, equation (4.20) becomes

2 Z P
{1+3u oo nl Py 82} v
= »

2 2
1-u 1-u oen (4.28)
2 l-u2 2
= -a(l-a)u ni,i + uz (1-a)pU [U,n] + 1
where I stands for all left over inhomogeneous terms and is given in full
in the Appendix.

Another possible coupling term, suggested by Whitham's papers on shock

dynamics (see References 5, 6, and 7), is the combination (p ¢! *oecngu, t')-
» ’
The derivative with respect to t' signifies the time variation as seen by an
observer who is instantaneously at rest with respect to the flow ahead of
+
S.asn, = . The following identities

. 3
the shock. That is to say, S T )

will prove useful.
(f’tq) = (f) - [uil (f,])

() 4

w* n, o+ ui+) (£ (4.29)

(F 07 + U ny(f )

It is possible to work out a relationship between ni(ﬁi)_ and

(p,t, + pcniui’t,) for substitution in (4.20), but it is simpler to
proceed directly as follows. With the aid of (4.29)1 we have

(P oy *penu. ) =p (vu, ) - [u ] )
% s Qs 9, - v Lyl 1 §& (4.30)

p,i + fi) - (pc) niluj](ui,j)

+ (pc)” ny (-

O |
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where (3.3) has been used to eliminate ﬁ and ﬁi' The acoustic speed
behind the shock is given by (p.c.)2 = -p,  so that rearrangement of terms
in (4.30) gives

+ pcn.u.
(p,t' P 1u1,tJ

=-(eny + [uD(p )7+ (o) nyf;
(4.31)

- (pc)” ni(c'nj + [yD (ui,j)'

~(pe?)” (835 - myny) vy ;)

gﬁnce [u] = aU+g, the first and third terms involve only normal derivatives,
which may be reexpressed by (4.29)2, and the last term may be rewritten

with (4.25). With rearrangement of terms and use of (3.7), equation (4.31)
becomes

U -c , -
u+ (p,t' G aniui,t')
¢+ au’ - - -
5 & gl D ),3 + (pc) my(uy ),3 (4.32)

- 2. - + +
+(pe)” mf; - (oc?) {(Gij-ninj) (u; "+ a ni,i}

When this equation is multiplied through by (1-a)U+/c', and (p) 3 and

(ui_) 5 are expanded with the use of (3.6),, (3.7)1, and (3.9), we have
ea-py o, + B 5 e " by + 420
a(i=y)] Py TR R R TR

3
U %
=, o =af P . =
a(l-a) S ni’.1 + (1-a)(1 “)(p,t' + aniU.’t')

i (4.33)
- - U
~fl= - = oA
(1-a(l-u)] %(1 alp, w gt BWIE ng %S "i(“i),3$
2
_(-a) U .
+pUnifi ¥ (dij ninj)ui,j
When combined with (4.18), equation (4.33) may be reduced to
[1-a(1-y)] ;}f“ 2. T¥~»Eﬂ~7 a?l u 3
. 5 " pe, = (4.34)
L U (1-a) (1-u) X -
= -a(l-a) ﬁ—_ni,i + B (p,t, + pcniui,t,) * K

where, as before, 1 stands for the inhomogeneous terms and is given in
full in the Appendix.
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Equations (4.20), (4.28), and (4.34) all have the form

2

r .
A U’ + B U Ai ni,r =0 % F (4.35)

3
where A and B are nondimensional coefficients, C is a term that couples

the shock to the rearward flow, and I represents the remaining inhomogeneous
terms. The terms A, B, C, and I have different forms in each version of
(4.35), of course. In every case A, B, and I are known functions of U, n,
X, and t. The coupling term C may be further decomposed into a product of
which the first term is also a known function, but the second term contains
derivatives of flow quantities p , v , or u . These derivatives are not
known in terms of quantities intrinsic to the shock wave, but, rather,
depend on the history of the flow. In particular, they depend on initial
and boundary data where the shock wave itself is one boundary, although
there may be others. Thus, (4.20), (4.28) or (4.34) should more properly

be regarded as functional-differential equations rather than differential
equations.

Nevertheless, let us assume for the moment that one of the coupling
terms is known exactly. Then (4.35) and the equation
+ T

p -nj(u. r) A, (4.36)

3 T s 1

3 o

n, .+ Al U
X

y

form a hyperbolic system in the unknowns U, n. Equation (4.36) is a purely
kinematic relation. It has been obtained by noting that since n - AF = o,
3 " Ar = =ne AF,S' But AI‘,S = X,FS = 5’31‘ = p’r and n-n
so (4.36) follows immediately with the use of (4.14).

we have n
2, 39

~

The function ¢(ul, u‘, u3) = o0 for the characteristic surfaces of
(4.35) and (4.36) must satisfy the equation

@ 9 {ae 9P - ™ e b o (4.37)

o

ra : :
where A° represents the contravarient components of the metric tensor for
the shock surface. The case ¢ 3 =0 is spurious, for it corresponds to the
50

requirement that surface derivatives of U and n are continuous on the shock
surface. Hence, the remaining term in brackets in (4.37) must vanish,
which corresponds to wave propagation within the shock surface itself.

That is to say, disturbances to the shock surface will spread as a wave
within the surface itself. Equation (4.37) indicates that the speed of
propagation is independent of direction. If s is the speed and 1 is any
unit vector that is tangent to the shock surface, we have

r
¢ P -A. ¢ =58 1 1,
¥ E Tl . (4.38)




Strictly speaking, equations (4.35) and (4.36) should be supplemented by

other equations since the functions g(ul, uz, u3) and Ar(ul, u2, u3) are
not known before hand, yet they are present in the coefficients and the
right hand sides of (4.35) and (4.36). Appropriate supplementary equations

are X 5 b and Ar 3 = b r Now the list of unknown functions to be deter-
’ 2 >

mined is U, n, ¥, and AF . If C is again regarded as known, the full set

of equations is hyperbolic as before, and the only nonvacuous characteristic
condition is still that the bracketed terms in (4.37) must vanish. Of
course, it should be shown that a solution to the full set of equations is
self-consistent since U, n and A_ must all be derivable from X, but that
proof will not be attempted here.

For arbitrary levels of shock amplitude the speeds calculated from
(4.20), (4.28), or (4.34) will not be the same since the functions A and B
are not the same in the three cases. However, for weak shocks the three
calculated speeds are nearly the same and all vanish for infinitesimal
shock amplitudes. Since ¥>1 and a>o for weak shocks, the speed tends to

s =Jf—;l‘—u (4.39)

Entropy changes may be ignored for weak shocks so (4.39), expressed as a
function of amplitude becomes

U+ + ‘/2+ 3

=y Pou 2

s 2{2+ }C # (4.40)
_pU

If p;U<o, then a<o and (4.40) must be modified accordingly.

For shocks of stronger amplitude it is not easy in general to compare
the wave speeds s for the three cases since the internal energy function
and its derivatives have not been specified. The polytropic gas is an
important special case for which an explicit comparison is easily made,
however. The specific internal energy in this case is given as follows,

Y-1 n-n
i Vo o
LB {G”} exp ; c, s (4.41)

where e, Vg and n, are reference quantities, ¥ is the specific heat at

constant volume, and y is the ratio of specific heats (cp, the specific heat

at constant pressure, divided by cv). Formulas for pressure, temperature,

or other derivatives of e are easily found.

y-1
= -e = S

P G )
s-e-lc

=

i v
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S p=lES S SR pE
p, = Lo =B (4.42)
v
2
P, = - 5P=- (c)

By manipulating the jump conditions (3.8) and (3.10) in conjunction with
(3.7)1 and (4.42)4, one may easily find formulas for p  and a in terms of

as= £ [}-lﬂ]
Y+1 mZ
2
= . S l2m ¥l
LA [Y+1 Y+1]

Similarly the Mach number behind the shock and the ratio pn-/pen_ are
easily calculated.

the Mach number m.

(4.43)

u2 e (Y-l)m2 82

Zsz -(y-1)
(4.44)
P . y-l_ G-D(+Dn’
Den— 1-a (Y-l)m2 + 2

The relations among m, u, and a are shown in Figure 1 for v = 1.4. With
these formulas the speed of disturbances on the shock surface always has

the form
's £ mz-l
<?) e »(m) (4.45)
(&
where the wave factor A(m) in the three different cases is given by
20): - 3L 2 i Ao
(4.20): Ay (m) = 2 R~ 5
1 2 2, y-1 l-uz
(4.28): Ay(m) = 5 41 ¢ 3u" + 2(1-3p°) a (4.46)
y+1 2
u u
2 - A
(4.38); A (m = &) E-z = (l-u)] g le;ﬁ_lil;ﬁl]
Y ke 2+u° (vy-1)

These functions are plotted in Figure 2 for y = 1.4. Although (1) = 4
in each case, the functions diverge from each other for other values of
m, particularly for large m, and the detailed shapes of the functions are
rather sensitive to y. As m tends to infinity, the three functions take
on limiting values
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3 2
b o« = ZY—-:__S_Y_____I.
haa: = G~ THNGD
. _ oyl
(4.28): Ap(=) = 3.7 (4.47)
) " 2 2y
(4.34). AS(“) =1 + ;— + 7_—1“

Clearly, the three limiting values depend strongly on y. This is shown
graphically in Figure 3. Certainly, the behavior of s in the general case
in (4.38) must also depend strongly on the details of the energy function

ei(v,n)-

1/ Mach Mumber or Amplitude

g = o o ot =
— o N & (o)) bD o
1 ) L L | R |
o |
®
o 3N|"‘
o
mL
g =
N
o
~T
.O-
N
oL
o

Figure 1: Square of reciprocal Mach number and shock
amplitude vs. u“ for y = 1.4.
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Figure 2:

Wave factor )\ vs. u~ for y = 1.4. Curves
corresponding to the three coupling
functions are shown.
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% Approximations

The preceding discussion has been based on the asumption that one of
the coupling functions is known exactly, and, if that is the case, then the
development of the equations as a hyperbolic system is entirely correct. In
an actual case, the coupling functions cannot be known exactly in advance
since the domain of dependence for the full equations (3.3) includes a
segment of the shock wave itself. This occurs because the backward wave
cone, with apex on the rear of the shock, intersects the past trajectory of
the shock. Thus, the hyperbolic description can only be approximate at
best. It is natural to ask, therefore, which of (4.20), (4.28), or (4.34)
will provide the best basis for an approximate treatment. The three coup-
ling terms are written again here for easy comparison.

l—uz
(4.20): €y = 50 - [l
M
2
(4.28): ¢, = {17“5‘ (l—a)mz} (pch) * v ] (4.48)
: _Ja-aa-wl 1 _
(4.34): C3 = { - } o (p,t' + pcniui’t,)
(pc)

In each case, for u = 1, the coupling term vanishes, and in fact, the
governing partial differential equations all become the same ordinary
differential equation along a ray because the curvature terms drop out as
well. As the shock strength increases u decreases from 1 in the range

12u2 . > 0, a in in the range o < a € < and U
u Hoin > increases from o in th g SRS A 1,

increases from ¢ in the range ct<u< © as may be seen in Figure 1 for
the special case of a polytropic gas with y = 1.4. It seems clear that of
the three coupling terms in (4.48) the last is weakest by far. For

example, in the case of a polytropic gas the term (l—uz)/u2 increases mon-
otonically to (y+1)/(y-1) ( = 6 for y = 1.4); the term mz(l-a)(l—uz)/u2

4
is exactly equal to m“-1 and so it always increases towards «; but the
term (1-a)(l-u)/m increases  to a weak maximum (about 0.11 at m = 1.4 for

v = 1.4), then decreases to zero. A few trial calculations indicate that
the maximum is not particularly sensitive to and never exceeds 0.13 or
so. The bracketed terms in (4.48) are shown in Figure 4. The three solid
curves correspond to the case y = 1.4. Note that the scale for C, is
expanded to forty times that for C1 and C,. For comparison the pgak value
of CS is showi on the same scale as the other two, and appears as the
small tick mark just above i~ = 0.6. The two curves with dashed segments
represent C, for the extreme cases y = 1 (lower curve) and y = «» (upper
curve) . Un}y the end points and the maxima were actually calculated for
the latter cases.




P

.
Figure 4: Coupling functions vs. p°~ for y = 1.4. Refer
to the main text for full explanation.

On the other hand, the strength of the coupling term depends as well

2 -1 -
ong . [u], pc”[v n], or (pc) (p * + pco ) , and an estimate of

U,t-
these terms should be made in any application, if possible. For example,
in the case of small perturbation of a nearly plane shock, the third com-
bination of terms depends only on overtaking disturbances (see Reference 5,
p. 268 and 273). Therefore, a good approximation should result by neglect
ing these terms in cases where the effects of inhomogeneities, caustics,

or focusing are to be studied; that is, in cases where the overtaking
disturbance is absent or weak compared to other effects. This 1s the
approach adopted by Whitham. A good approximation should also result

cases where the overtaking disturbance can be estimated by linear theor,

as in the case of weak shocks.
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Comparison With Whitham's Shock Dynamics

In a series of three papers (see References 5, 6, 7, and 8) G. B.
Whitham developed a theory of shock dynamics that was intended to describe
medium to strong shocks in cases dominated by geometry or short time local
effects. The theory was based on two purely kinematic relations, and an
assumed nonlinear relation between Mach number and the area of a ray tube.
This last relation was derived from a one-dimensional formulation of the
perturbation of a shock that propagates down a channel with slowly varying
cross section. Equation (4.36) with zero right hand side corresponds to
the first of Whitham's kinematic relations. The second may be found by
applying Euler's formula for the derivative of a determinant to (2.7).

3 { ai}
J - <{det =
s au3 u

I fax!
J i“—i . 18R (4.49)
X u s
ii
JEEE =Jb, .,
3 S 1ok
Ju 51

Equation (4.49) is equivalent to the formula (bi/J) i =9 which, if

specialized to the case of normal rays, corresponds to the form originally
used by Whitham. In any case, with the aid of (2.7), (3.4), and (4.14),
equation (4.49) may be reduced to

2
Ll

&
Uni,i - —A’/-z_ 2 o= (61 = 1. n )(Ul J) (450)

1
2

L
where A* = {det AFA} ?.  (The square root of the determinant of the surface

metric, which is a measure of surface area, was called the area function
by Whitham and denoted A.) The use of an assumed relation between the

: 1,
area function and the shock speed, A*? = £(U), in equations (4.36) and
(4.50), both with zero on the right sides, leads to a system of hyperbolic

equations
Yy L) ! U,+Un, . =o0
U 5 i, 1
(4.51)
I =
ni,3 + Ai U,F =0
The characteristic speed of propagation for these equations is
1
§__= u fu) m2-1 - (4.52)
e f'(U) A (m)
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It turns out that A(m) in (4.46)3 and in (4.52), as given in (8), are

identically equal. Thus, the full equation (4.34) represents a generaliza-
tion of Whitham's shock dynamics to fluids that are nonconductors of heat
and that have generally inhomogeneous conditions ahead of the shock.
Furthermore, by working with exact equations, it has been possible to
retain the complete coupling term. This should permit error estimates

and systematic approximations to be made.
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APPENDIX

The inhomogeneous terms in equations (4.20), (4.28), and (4.34) are
listed here.

(4.20): -
2 2 2 P
¥ pU 1+u u- 1+3u 2wy AT
Rl 2}1'2'_"2"3] ol [la 2] i Moy T
uo1l-u m 1+u pe m
pn 1+u2 pn “n Pn
+ - > — —— - l+a = Un 3
P 3y i 8 pe ’
n
2
U u
- ;7-13 nan + [l-a - ;7] 613 ul’J
(4.28)
2 4F 2 4 P
{ « £U 1-3p 1oy - B, 2up o2 Fy -a L Vi i
2 2 2 2 ,N : I
uo 1l-u m 1-3u pen m
prl 1-3u2 pn en 1+ P U
- = 5 S e a 3
e 1-p n e pe >
n
U - 2
- — {an.n., + l-a - § u
u2 i) ol | 13} 1.
(4.34):
1 = py 1z8ll-p) F 1y , pn’ + p”- Yo seap Uv _ + v
Sk - T R e g (W, oy )
L um e, m
R, p, ¢ P,
FETY I
b0 Ny Pen
1-a(1-y) v ; _ Q-a) -y
+ - up’n - [auninj + (1-a) Gij] ui,j ” nifi
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LIST OF SYMBOLS
Base vectors in the shock surface
Surface metric components
Determinant of surface metric det A
Coefficients in a shock surface wave equation
Shock amplitude
Surface curvature tensor
Propagation vector
Measure of entropy jump
Speed of sound
Specific heats
Internal energy
Body force
Inhomogeneous terms
Jacobian determinant
Unit vector in shock surface
Incident Mach number
Unit normal to shock surface
Pressure
Speed of surface disturbance
Time
Shock speed relative to fluid
Surface coordinates and time
Particle velocity

Shock speed




>

Cartesian coordinates
Ratio of specific heats
Specific entropy density
Temperature

Function of Mach number
Trailing Mach number
Mass density

Shock surface

Arrival time of shock
Specific volume
Characteristic function on shock surface

Jump of bracketed quantity
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